ধরা যাক, ABC একটি প্রিজমের প্রধান ছেদ [চিত্র ৬.১৮]। PQ আলোক রশ্মি বায়ু মাধ্যমে AB তলে Q বিন্দুতে আপতিত হয়। ) বিন্দুতে মাধ্যমের পরিবর্তন হওয়ায় PQ রশ্মিটি প্রতিসরিত হয়ে AB তলে আঁকা NQO অভিলম্বের দিকে সরে QR পথে চলে যায়। QR রশ্মিটি R বিন্দুতে আপতিত হয়ে পুনরায় প্রতিসরিত হয় এবং AC তলে আঁকা N' RO অভিলম্ব থেকে দূরে সরে RS পরে বায়ু মাধ্যমে নির্গত হয়। সুতরাং PORS হচ্ছে আলোক রশ্মির সমগ্র পথ। এখানে PQ আপতিত রশ্মি, QR প্রতিসরিত রশ্মি এবং RS নিষ্ক্রান্ত বা নির্গত রশ্মি। চিত্র থেকে দেখা যায় যে, প্রিজমের মধ্য দিয়ে যাওয়ার ফলে রশ্মিটি প্রিজমের ভূমি BC-এর দিকে বেঁকে গেছে বা রশ্মিটির বিচ্যুতি ঘটেছে। যদি প্রিজমটি না থাকতো তাহলে PQ রশ্মি PQTU পথে চলে যেত। প্রিজমের উপস্থিতির জন্য আলোক রশ্মির বিচ্যুতি হয়।
বিচ্যুতি কোণকে <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math> দিয়ে প্রকাশ করা হয়। ৬.১৮ চিত্রে আপতিত রশ্মি PQ ও নির্গত রশ্মি RS এর মধ্যবর্তী কোণই প্রিজমে প্রতিসরণ হেতু PQ রশ্মির বিচ্যুতির পরিমাপ। এখন PQ এবং RS-কে বাড়ালে T বিন্দুতে ছেদ করে। সুতরাং বিচ্যুতি কোণ <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math> = <UTR |
আমরা জানি যে, প্রিজমের মধ্য দিয়ে আলোক রশ্মির প্রতিসরণের ফলে আপতিত রশ্মির বিচ্যুতি হয়। একটি প্রিজমে এই বিচ্যুতির পরিমাণ আপতন কোণের উপর নির্ভর করে। প্রিজমের উপর আপতিত রশ্মির আপতন কোণ খুব নিম্নমান থেকে ধীরে ধীরে বাড়াতে থাকলে প্রথমত বিচ্যুতি কোণ কমতে থাকে। কিন্তু আপতন কোণ একটি নির্দিষ্ট মান অতিক্রম করলে বিচ্যুতি কোণ কমার পরিবর্তে আপতন কোণের বৃদ্ধির সাথে সাথে বাড়তে শুরু করে [চিত্র ৬.১৯]। এই বিশেষ মানের আপত্তন কোণের বেলাতে বিচ্যুতি কোণের মান সবচেয়ে ছোট হয়। আপতন কোণের মান এর চেয়ে কম হলে বা বেশি হলে বিচ্যুতি কোণ সব সময়ই বড় হবে। নিম্নতম মানের এই বিচ্যুতি কোণকে ন্যূনতম বিচ্যুতি কোণ বলে। ন্যূনতম বিচ্যুতি কোণকে সাধারণত <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math>m বা Dm দ্বারা প্রকাশ করা হয়।
বিচ্যুতি কোশ ন্যূনতম হওয়ার শর্ত : i1 = i2 এবং r1 = r2 হলে অর্থাৎ আপতন কোণ ও নির্গমন কোণ সমান হলে বিচ্যুতি কোণ ন্যূনতম হয় ।
প্রিজমের উপাদানের প্রতিসরাঙ্ক ও ন্যূনতম বিচ্যুতি কোণের সম্পর্ক
আমরা জানি, প্রিজমে বিচ্যুতি কোণ, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math> =i1 + i2 -A
এখানে প্রিজম কোণ, A = r1 + r2
ন্যূনতম বিচ্যুতি অবস্থানে i1 = i2 ও r1 = r2 এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math>m, অর্থাৎ বিচ্যুতি কোণের মান ন্যূনতম হয় ।
সুতরাং
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math>m =i1 + i2 -A
= 2i1 -A
এখন প্রিজমের উপাদানের প্রতিসরাঙ্ক হলে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mfrac><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><msub><mi>i</mi><mn>1</mn></msub></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><msub><mi>r</mi><mn>1</mn></msub></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mfrac><mrow><mi>A</mi><mo>+</mo><msub><mi>δ</mi><mi>m</mi></msub></mrow><mn>2</mn></mfrac></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mfrac><mi>A</mi><mn>2</mn></mfrac></mrow></mfrac></math> ... (6.24)
যে সকল প্রিজমের প্রতিসারক কোণ 4° থেকে 6°-এর চেয়ে বড় নয় তাদেরকে সরু প্রিজম বলে। কোনো সরু প্রিজমের উপর একটি রশ্মি খুব ছোট কোণে আপতিত হলে অর্থাৎ প্রায় লম্বভাবে আপতিত হলে বিচ্যুতি কোণ,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math> = i1 + i2 -A
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mfrac><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><msub><mi>i</mi><mn>1</mn></msub></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><msub><mi>r</mi><mn>1</mn></msub></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><msub><mi>i</mi><mn>2</mn></msub></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><msub><mi>r</mi><mn>2</mn></msub></mrow></mfrac></math>
এখন i1, ও r1 Then ছোট হওয়ায় i2 ও r2-ও খুব ছোট হয়। কাজেই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mfrac><mrow><mo> </mo><msub><mi>i</mi><mn>1</mn></msub></mrow><mrow><mo> </mo><msub><mi>r</mi><mn>1</mn></msub></mrow></mfrac><mo>=</mo><mfrac><mrow><mo> </mo><msub><mi>i</mi><mn>2</mn></msub></mrow><mrow><mo> </mo><msub><mi>r</mi><mn>2</mn></msub></mrow></mfrac><mo> </mo><mspace linebreak="newline"/><mi>δ</mi><mo>=</mo><mi>μ</mi><msub><mi>r</mi><mn>1</mn></msub><mo>+</mo><mi>μ</mi><msub><mi>r</mi><mn>2</mn></msub><mo>−</mo><mi>A</mi><mspace linebreak="newline"/><mi>δ</mi><mo>=</mo><mi>A</mi><mfenced><mrow><mi>μ</mi><mo>−</mo><mn>1</mn></mrow></mfenced></math>
অর্থাৎ সরু প্রিজমের ক্ষেত্রে বিচ্যুতি কোণের মান আপতন কোণের উপর নির্ভর করে না কেবল প্রিজমের প্রতিসারক কোণ ও প্রিজম পদার্থের প্রতিসরাঙ্কের উপর নির্ভর করে।
Read more